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Project Objectives 
Malware attacks on computer systems have increased sharply in recent years. Mitigating the effects of 

such attacks requires quick response. However, this is hampered by the many layers of anti-analysis 

defenses mounted by malware code, which existing program analysis techniques do not handle well and 

which therefore require time-consuming and tedious manual intervention. The overall goal of this 

project was to develop techniques to automate the analysis of malware executables, and thereby 

accelerate the process of identifying the internal logic of the malware code. A secondary goal was to 

develop automated techniques to identify and—where possible, eliminate—anti-analysis defenses in 

the code, so as to simplify subsequent analysis. 

Significant Accomplishments 
The significant accomplishments of the project consist of the following: 

1. [Foundations]: We developed a formal semantic model for self-modifying code. 

2. [Static Extraction of Malware Code]: We developed a technique to use program analysis 

algorithms to identify the decryptor routine in a malware binary, and then modify this decryptor 

routine in such a way that it can be used to extract the malware code. 

3. [Anti-analysis Defense Detection]: We developed a technique to identify dynamic anti-analysis 

defenses in the malware code by analyzing the control-flow structure of the code leading to the 

decryptor routine. 
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4.    [Detection of Disassembly Errors): We developed a machine-learning-based technique to 

identify code regions in a disassembled file that appear to contain disassembly errors. 

We discuss these items in more detail below. 

1. Foundations 
Automated analysis of obfuscated malware code requires the application of program analysis 

algorithms. However, classical program analysis algorithms, which are used in the areas of compilers 

and software engineering, presuppose that the code being analyzed is immutable. They are therefore 

inapplicable to self-modifying programs, which includes most malware.  To address this problem, we 

formulated a formal semantics for self-modifying code [DCT08]. To the best of our knowledge this is the 

only work on formally modeling self-modifying code that makes it straightforward to identify code 

regions where classical program analysis algorithms can be applied with the appropriate soundness 

guarantees. It forms the formal basis for our work on Static Code Extraction and Anti-Analysis Defense 

Identification. 

A detailed description of the formal semantics is given in the publication referenced below [DCT08]. It is 

available from the Pi's web page (www.cs.arizona.edu/~debray/Publications). 

2. Static Extraction of Malware Code 
Most malware code is transmitted in encrypted or "packed" form and unpacked at runtime prior to 

execution. In many cases, the unpacking routine that restores the code to its original executable form is 

guarded by various kinds of defensive checks aimed at making it harder to reverse-engineer the code. 

For example, such defenses might cause the unpacker to be invoked—and the malware payload to be 

exposed for analysis—only on specific dates ("time bombs") or when executed in a specific environment 

("logic bombs"). The objective of this part of the project was to devise techniques to extract the code 

via static analysis, thereby sidestepping such dynamic defenses. 

We developed an algorithm to statically extract packed malware code [CDKT09]. There are three 

conceptual parts to this algorithm. First, memory analysis is used to identify memory locations that are 

modified, and program slicing is then used to identify the unpacker code. The second part then uses the 

control flow structure of the code to identify—and, where possible, eliminate—runtime anti-analysis 

defenses. Finally, the unpacker code is emulated in a sandboxed environment to extract the malware 

code. 

We implemented our ideas in a binary analysis tool consisting of roughly 81,000 lines of C code. This 

system was evaluated on a variety of packed malware code that used both commercial packers, such as 

UPX and tElock, as well as a number of different custom-crafted packers. In each case, we used a 

manual analysis to determine the actual unpacked instruction sequence, and compared this with the 



unpacked code obtained using our analysis tool to determine the extent to which our tool was able to 

successfully extract the packed malware code. 

Our evaluation of this algorithm showed that it could handle a variety of commercial as well as custom 

unpackers. One engineering issue that posed a hurdle was that of replicating OS-level features with 

sufficient fidelity within the sandboxed unpacker: this is necessary to deal with unpacker code that 

makes system calls as part of the unpacking process. This, in turn, limited the extent to which our 

implemenation was able to handle multi-level unpacking. 

A detailed description of this algorithm and our evaluation data are available in the publication 

referenced below [CDKT09]. It is available from the Pi's web page 

(www.cs.arizona.edu/~debray/Publications). 

3. Anti-Analysis Defense Identification 
As discussed above, one of the steps in the static extraction of malware code is to identify the unpacker 

code using program analysis techniques. These same program analyses also reveal the control flow 

structure of the code leading up to the unpacker. An examination of this control flow structure then 

makes it possible to detect the possible presence and nature of anti-analysis defenses in the code 

(CDKT09]. Furthermore, the analysis of this code reveals whether there are any dependencies between 

the defense code and the unpacker code—if, as is usually the case, there are no dependencies, the 

defense code can be removed without affecting the unpacker code. This therefore provides an 

approach to the identification and elimination of runtime anti-analysis defenses with semantic 

soundness guarantees. 

A detailed description of this algorithm and our evaluation data are available in the publication 

referenced below [CDKT09]. It is available from the Pi's web page 

(www.cs.arizona.edu/~debray/Publications). 

4. Detection of Disassembly Errors 
A fundamental assumption made by all existing approaches for static analysis of malware executables 

(including ours) is that the malware code has been accurately disassembled.  This assumption may not 

hold true if the malware being analyzed uses anti-disassembly defenses, i.e., techniques intended to 

introduce errors into disassembled code.   Moreover, the ubiquitous Intel IA-32 architecture has a very 

high density of instruction encoding, i.e., almost any sequence of bytes decodes to some legal 

instruction—it is unusual for a disassembly (even one that contains numerous errors) to actually 

encounter an illegal byte sequence. This means that disassembly errors usually occur silently, 

substituting erroneous instructions for the correct ones without any external indication that something 

has gone wrong. The reason this is an issue, even using current dynamic analysis (which observe the 

execution of the program being analyzed and therefore are presumably immune to anti-disassembly 
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defenses), is that dynamic analyses can only examine those parts of the program that were executed; 

the remainder—which may contain conditionally unpacked code—has to be examined using the results 

of static disassembly.   If the static disassembly contains undetected errors, subsequent analyses based 

on the incorrect disassembly propagate errors silently up the entire analysis chain. Our objective in this 

portion of the project was to develop techniques to analyze an instruction sequence obtained via static 

disassembly and identify possible errors. 

We carefully examined a large body of correct and incorrect disassemblies and observed that the 

erroneous disassemblies, while technically "legal", looked different from correct disassemblies. 

Sometimes the discrepancies were quite obvious, e.g., addresses that did not correspond to any location 

within the program; at other times they were subtle, e.g., the use of unusual combinations of 

instructions or addressing modes. We then used machine learning techniques to systematize the 

process of distinguishing correctly disassembled code from incorrect disassemblies. The idea is to use a 

training set of examples of both correct and incorrect disassemblies, and use machine learning to 

determine which combinations of features of these disassemblies correspond to correct disassemblies 

and which do not. The resulting classifier can then be used to detect possible errors in other 

disassembled code. The accuracy of this classifier depends on the extent of coverage provided by the 

training set. We evaluated our classifier on a number of disassemblies obtained from obfuscated 

binaries and found that, with a little care in selecting the training input, it is possible to obtain quite 

accurate error classification in general [KDF09]. 

A detailed description of this algorithm and our evaluation data are available in the publication 

referenced below [KDF09].   It is available from the Pi's web page 

(www.cs.arizona.edu/~debrav/Publications). 

Theses and Dissertations 
In addition to the publications mentioned above, the research effort has led to one MS thesis 

[Krishnamoorthy] and one PhD dissertation [Coogan].   We describe their most significant contributions 

below. 

1. Kevin Coogan,"Automatic Deobftiscation of Malware Executables." 

Doctoral Dissertation, The University of Arizona, Tucson. 

Expected Completion Date: December 2010. 

Executive Summary 

Computer malware typically resort to a variety of techniques to make it difficult for others to 

understand the internal logic of the malware code; these techniques are usually referred to as "code 

obfuscations." The effect of such obfuscations is to slow down the process of understanding the 



malware and devising countermeasures. This dissertation investigates techniques to automate the 

process of identifying and eliminating the effects of obfuscation, and thereby extracting the essential 

internal logic of the malware code, with the intent of simplifying and speeding up the task of developing 

countermeasures to new malware. Two different approaches are explored: static analysis, where the 

malware sample is analyzed without running it; and dynamic analysis, where the malware is executed in 

a suitably isolated environment and its execution observed. In the case of static analysis, the 

dissertation describes a technique to use program analysis techniques to identify code that the malware 

would decrypt when executed, and extract this code automatically without running the malware. In the 

case of dynamic analysis, the dissertation develops techniques to examine the sequence of instructions 

executed by the malware sample and identifying those instructions that are irrelevant to its observable 

behavior and which can therefore be discarded, thereby reducing the set of instructions that have to be 

considered when understanding the malware code. 

Note: The dissertation is expected to be completed by December 2010. At that time it will be available 

from the web site of the University of Arizona Department of Computer Science, or via email from the PI 

(email: debray@cs.arizona.edu). 

People involved in the research (in addition to the PI): Kevin Coogan, Gregg Townsend, TasneemKaochar, 

Amr Gaber. 

Publications resulting from this research: 

1. S. K. Debray, K. P. Coogan, and G. M. Townsend. On the Semantics of Self-Unpacking 
Malware Code. Technical Report, Dept of Computer Science, University of Arizona, Tucson. 
July 2008. http://www.cs.arizona.edu/~debray/Publications/self-modifyinfi-pgm- 
semantics.pdf 

2. Kevin Coogan, Saumya Debray, Tasneem Kaochar, andGregg Townsend. Automatic Static 

Unpacking of Malware Binaries. Proc. 16th. IEEE Working Conference on Reverse 

Engineering, October 2009, pp. 167-176. 

2. Nithya Krishnamoorthy, "Automatic Static Detection of Disassembly Errors" 

MS Thesis, The University of Arizona, Tucson 

Expected Completion Date: May 2010 

Executive Summary 

When someone wants to understand the internal logic of a malware program, the first step is to take 

the malware file, which is in a format suitable for execution on a computer, and extract from it a human- 

readable representation of the machine instructions in the malware code. This process is known as 
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disassembly, and all of the work on malware analysis assumes that the disassembly is successful and 

that the human-readable representation obtained is correct. Unfortunately, in practice disassemblies 

may contain errors, and the errors may not always be detected by the disassemble. When this happens, 

the conclusions drawn from subsequent analyses of the erroneous disassembly are also wrong. 

This thesis describes an approach for automatically detecting locations within a disassembly that may 

contain errors. The key insight in this work is that when a disassembly error occurs, the resulting 

(erroneous) instruction sequence is subtly different from disassemblies that are correct. The thesis 

proposes an approach that uses machine learning techniques to "learn" how to distinguish between a 

sample set of correct disassemblies from a sample set of incorrect disassemblies. This results in a 

software tool that can be used to detect incorrect disassemblies. Experimental studies indicate that the 

resulting tool can automatically detect errors in disassemblies with a high degree of precision. 

Note: The thesis is expected to be completed by May 2010. At that time it will be available from the 

web site of the University of Arizona Department of Computer Science, or via email from the PI (email: 

debray@cs.arizona.edu). 

People involved with this research (in addition to the PI): Nithya Krishnamoorthy, Keith Fligg. 

Publications resulting from this research: 

1.    Nithya Krishnamoorthy, Saumya Debray, and Keith Fligg. Static Detection of Disassembly Errors. 

Proc. 16th. IEEE Working Conference on Reverse Engineering, October 2009, pp. 259-268. (A 

revised and extended version of the paper has been invited to a special issue of the journal 

Science of Computer Programming.) 

Software Resulting from the Research Effort 

The research effort has led to the development of prototype software tools used for validation and 
evaluation of the research. These consist of the following: 

1. A tool for automatic code extraction from packed malware executables. This consists of roughly 

81,000 lines of C code. A README file for this system is given in Appendix 1. The software is 
available from the PI via email. 

2. A tool for automatic detection of disassembly errors. This consists of a total of roughly 65,000 
lines of C code. A README file for this system is given in Appendix 2. The software is available 
from the PI via email. 
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APPENDIX 1. Online README file for Automatic Static Decryption Tool 

The tool described earlier for satic extraction of malware code consists of approximately 81,000 lines of 
C code. It is not practical to attach this to this report; instead we attach the README file describing this 
tool. The software itself can be obtained from the PI (email: debray@cs.arizona.edu). 

1.0  System Requirements and Build 

The system is meant to run on linux 2.6.28-13 or higher. 
The Boehm-Weiser garbage collector should be installed on your system. 

To build, type make all from top level install directory.  Note that there 
is no make install option.  Executable file is located in 
<install_dir>/bin. 

2.0 Executing sytem 

System expects an executable file name as input.  To see a full list of 
options, type bin/plto with no parameters. 

To run the code on a particular executable file, use: 
/home/me/brevengg/> bin/plto <executable_name> 

for example 
/home/me/brevengg/> bin/plto sample/Hybris.c_defensel.exe 

Code will produce binary file if transition point is found, and it matches 
one 
of the potential transition points.  This binary file is the dump of 
memory 
for the code at the point of tranistion to unpacked code. 

3.0 Source file listing 

<install_dir>/: 
Makedefs 
Makefile 
README 

<install_dir>/sample: 
Hybris.c_defensel.exe   //sample malware file to test code 

//WARNING — THIS IS A LIVE WINDOWS 
VIRUS! !!!!!!!!!!!! 

<install_dir>/src: 
addr_translation.c      //function to translate virtual addrs to runtime 
addrs 
aloe-list.c //aloe data structures — pointer set analysis 
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aloe-list.h 
bbl.c 
cache.analyze.c 
cache.analyze.h 
call-analysis.c 
call-analysis.h 
clone.c 
clone_small.c 
config.c 
cp.c 
decrypt.c 
deobfuscate.c 
d_graph.c 
disassemble.c 
disassemble.h 
dominator.c 
ep.c 
flowgraph.c 
function.c 
hash.c 
instr.c 
kreugel-disasm.c 
kreugel-junk.c 
linkage.c 
liveness.c 
liveness.ci.c 
liveness.ci.h 
liveness.cs.c 
liveness.cs.h 
loop-analysis.c 
loop-analysis.h 
lto.c 
lto.h 
main.c 
Makefile 
misc.c 
NDG.c 
opt .h 
opt.inline.c 
opt. memopt. c 
opt.peephole.c 
opt.unreachable.c 
phase.c 
plto.c 
done. 
plto.h 
potential.c 
only 
potential.h 
print.c 
print.h 
relocate.c 
slice.c 

//basic block data structure functions 
//instruction cache (performance increase) 

//analyze function calls and dependencies 

//copy various data types 
//DEPRACATED 
//system initialization 
//constant propogator 
//build and execute unpacker (decryptor) 
//remove zero effect code 
//visual graph generation 
//disassemble executable*s byte code 

//pre/post- dominator analyses 
//entry point calculation and handling 
//build and manipulate control flow graph 
//build and manipulate function information 
//instruction hashing data structure 
//instruction data structure functions 
//disassembler built on Kruegel's paper 

//functions for adjusting links on basic blocks 
//liveness analysis functions 

//find loops 

//link time optimization (LEGACY CODE NOT USED) 

//main 

//functions that don't fit anywhere else 
//non-directed graph functions 
//optimization functions 

//phase data structure functions 
//drives code, where most of top level work is 

//evaluation of different techniques, internal 

//various print routines 

//handles relocations (LEGACY CODE NOT USED) 
//calculates backward static slice 



sloop.c 
stack.analyze.c 
sysdep.c 
transition-points.c 
points 
win_wrappers.c 
cygwin 

<install_dir>/aenv: 

absenv.c 
absint.h 
aloc.c 
alocenv.c 
bool3.c 
flags.c 
Makefile 
memregion.c 
strditvl.c 
valueset.c 

<install_dir>/arch: 
elf 
i386 

<install_dir>/bin: 
README 

<install dir>/doc: 

bitmanual 
code_docs 
CodingStyle.txt 
Makefile 
man 
prog ramme r_manua1 
usermanual 
wbtOl 

//generates text for sloop graphics program 
//functions for various stack analyses 
//handles system dependencies 
//calculates and tracks potential transition 

//enables calling of windows functions if on 

//abstract environment data structures and related 

//some documentation related to source code 
//not made by make all at top level, 
//cd into dir and make 

<install_dir>/elf: 

constants.h 
file.h 
Makefile 
print.c 
process-binary.c 
protos.h 
read.c 
write.c 

//code related to elf specific arch {LEGACY CODE) 

<install dir>/include: 
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addr_translation.h 
aenv.h 
aloe-list.h 
basetsd.h 
bbl.h 
clone.h 
config.h 
cp.h 
CVS 
decrypt.h 
deobfuscate.h 
digraph.h 
dominator.h 
edge.h 
edge.type.h 
elf.h 
elfio.h 
ep.h 
file.h 
flags.h 
flist.h 
flowgraph.h 
function.h 
global.h 
hash .h 
instr.h 
kreugel-disasm.h 
linkage.h 
liveness .h 
macros.h 
NDG.h 
operand.h 
opt.layout.h 
opt.unreachable.h 
phase.h 
plto_types.h 
ptr_set_analysis.h 
range.h 
relocate.h 
relocation.h 
sdkddkver.h 
section.h 
slice.h 
sloop.h 
stack.analyze.h 
string_table.h 
symbol.h 
sysdep.h 
transition-points.h 
util.h 
utilities.h 
valprof.h 
windef.h 
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winerror.h 
winnt.h 
win_wrappers.h 
x86-asm.h 
x86-classes.h 
x8 6.h 
x86-liveness .h 
x86-registers.h 
x86-table-defs.h 
x86-util.h 

<install_dir>/lib: 
Makefile 

<install dir>/libtest: 

aloc.c 
alocenv.c 
alocenv.std 
aloc.std 
appmap.c 
appmap.std 
arraylist.c 
arraylist.std 
bool3a.c 
bool3a.std 
bool3b.c 
bool3b.std 
check 
collector.c 
collector.std 
flags.c 
flags.std 
hacks.c 
hashtable.c 
hashtable.std 
linkedlist .c 
linkedlist.std 
Makefile 
memregion.c 
memregion.std 
README 
strditvl.c 
strditvl.std 
valuesetl.c 
valuesetl.std 
valueset2.c 
valueset2.std 

//some data structure test packages, not made 
//by make all at top level, 
//cd into dir and make 

<install_dir>/old-windisasm: 
//old version of windiasm files (NOT USED) 
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basetsd.h 
bbl.h 
cmdline.c 
dis.c 
error.c 
error.h 
function.h 
global.h 
hashtable.c 
helper.c 
instr.h 
iprint.c 
linkedlist.c 
main.c 
Makefile 
operand.h 
output.c 
plto_types.h 
read-pe.c 
sdkddkver.h 
section.c 
section.h 
symbol.h 
util.c 
util.h 
utilities.h 
windef.h 
winerror.h 
winnt.h 
x86-asm.h 
x86-classes.h 
x86-condition-codes.h 
x86-dis.h 
x86.h 
x86-hash .h 
x86-histogram.h 
x86-icreate.h 
x86-inline.h 
x86-iprint.h 
x86-jt.h 
x86-liveness.h 
x8 6-op.h 
x86-prefix .h 
x8 6-profdump.h 
x86-registers.h 
x8 6-schedule.h 
x86-table-defs.h 
x86-table.h 
x86-util.h 

<install_dir>/pe: 
//windows portable executable (pe) specific code 

cmdline.c 
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//pointer set analysis code and data structures 

disasm 
main.c 
Makefile 
read-pe.c 
section.c 

<install_dir>/psa: 

abs_transformers.c 
abs_transformers.h 
aloe-list.c 
Makefile 
ptr_set_analysis.c 

<install_dir>/util: 
//some helpfule utilities 

alloc.c 
appmap.c 
arraylist.c 
hashtable.c 
helper.c 
linkedlist.c 
Makefile 
output.c 
util-c 

<install_dir>/x86: 
//x86 architecture specific code 

asm. c 
dis.c 
hash.c 
histogram.c 
icreate.c 
inline.c 
iprint.c 
jt.c 
liveness .c 
Makefile 
op.c 
schedule.c 
table.c 
util.c 
x86-condition-codes.h 
x86-dis.h 
x86-hash.h 
x86-histogram.h 
x86-icreate.h 
x86-inline.h 
x86-iprint.h 
x86-jt.h 
x86-op.h 
x86-prefix.h 
x86-profdump.h 
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x86-schedule.h 
x86-table.h 
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APPENDIX 2. Disassembly Error Detection Tool 

The tool for detecting disassembly errors consists of over 61,000 lines of C code for the tool that generates 
training inputs and over 3,000 lines of C code. It is not practical to attach this to this report; instead we 
attach the README file describing this tool. The software itself can be obtained from the PI (email: 
debray@cs.arizona.edu). Additionally, it uses C4.5, an open-source tool for constructing decision trees; 
however, this software must be obtained from its author (http://www.rulequest.com/Personal); 
restrictions in the license preclude us from distributing it. 

Requirements 
1. 64 bit processor 
2. Udis 86 disassembler must be installed 

Folder description 
1. plto: Modified PLTO for generating training inputs 
2. xtractFeatures: Code that generates feature vectors from PLTO output 
3. C4.5: Decision Tree construction algorithm modified for the identifying 
disassembly errors 
4. scripts: Bash scripts that run the various processes 

Steps to construct training data 
1. Run the following commands on the folders: 

C4.5/R8/Src - make all 
plto - make 
xtractFeatures - make 

2. Collect and feed the set of training executables that contain 
relocation data to /plto/bin/plto 
3. Pass the resultant set of files through xtractFeatures 
(scripts/train_all.sh could be used with the appropriate folders provided) 
4. Run scripts/removeCommentsAndGetC45Set.sh to obtain the training file 
named allfeatures.data in the output folder 
5. Create an appropriate allfeatures.names in the same output folder using 
scripts/allfeatures.names as the base 
6. Run scripts/train_all.sh to create the decision tree 

Steps to construct test data and run tests 
1. Collect the objdump output for the test file along with the section 
header information 
2. Create the feature set using scripts/make_testing_diff_features.sh 
3. Run scripts/test_all.sh to get the results in the file scripts/Results 
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in malware codes; an approach to automatically identify and emulate the code that performs 
the actual decryption of the malware code, and thereby extract the malware code; and an 
approach to detect possible errors in the instruction sequence obtained from examining a 
malware executable file.  These results formed substantial components of one PhD dissertation 
and one MS thesis in Computer Science. 
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